
An Algorithm for Permuting Variables of
Recursively Represented Polynomials

Marc Conrad1 and Susanne Schmitt2

1 Marc.Conrad@luton.ac.uk, University of Luton, Park Square, Luton LU1 3JU
2 sschmitt@mpi-sb.mpg.de, MPI für Informatik, Saarbrücken

Abstract. A straightforward way to represent multivariate polynomial
in software is to implement them recursively as univariate polynomials
over a polynomial ring. This is especially common in an object oriented
context. We present a short algorithm which maps polynomials from one
polynomial ring to another polynomial ring where the order of variables
is permuted. This algorithm uses the recursive representation and does
not change to another representation.

1 Introduction

There is no representation of multivariate or univariate polynomials in software
that is optimal for all applications. For instance it is well known that for the
computation of Groebner bases, polynomials are best represented in a distributed
format as the major operations are performed with respect to monomials [4].
Distributed means here that a polynomial is represented as a sum of monomials,
where each monomial is the product of powers of variables and a coefficient
in a base ring R. In the context of highly parallel SIMD (Single Instruction
Multiple Data) architecture a variant of TFD (Table of Finite Differences) has
been proven to be useful [8]. In some applications the representation is dictated
by the problem (rather than by the algorithm that solves that problem). For
instance polynomials may be the result by an implicit construction. The only
accessible operations are then to evaluate the polynomial on test values, and
problems that are simple in other representation like checking for the polynomial
being identical zero require sophisticated approaches [5]. In the following we
ignore theses “Black Box” problems and assume that the coefficients are known
and can be used for representation.

The conceptually simplest way to represent an univariate polynomial f(x) =
αnxn + · · ·+ α1x + α0 ∈ R[x] is to store the coefficients αn ∈ R using a vector
containing either the coefficients αn, . . . , α1, α0 (dense representation) or the
pairs (k, αk) with αk 6= 0 (sparse representation). We call R the coefficient ring
of the polynomial ring.

Polynomials appear in a number of application domains, and we find a variety
of possible base rings R, for instance complex numbers C [7], modular integers
Z/mZ [1], and integers Z as well as real numbers R [4]. Hence it is good practice
to implement polynomials generically, for instance – in an object oriented context
as in [2] and [6] – by using an abstract class for the base ring R.



An advantage of a generic approach is that an implementation of generic
univariate polynomials includes multivariate polynomials with no additional
effort. For instance the polynomial ring over two variables a and b, namely
R[a, b] ∼= R[a][b] ∼= R[b][a] can be obtained as the univariate ring of polynomi-
als over the variable b with coefficients in R[a]. The problem here is that the
rings R[a][b] and R[b][a], although isomorphic, are unrelated in their internal
representation. In the literature there exists so far no algorithm that directly
maps elements from R[a][b] to R[b][a] without changing from a recursive repre-
sentation to a distributed (or any other) representation. We close this gap by
presenting a recursive algorithm that works on an arbitrary number of variables.
The strength of the algorithm is that it is simple in code and is therefore well
suited for prototyping and ad hoc implementations.

In the general situation we consider multivariate polynomials of R[x1, . . . , xn]
over a ring R that are implemented recursively as elements of R[x1] . . . [xn]. That
means we implement an arithmetic for univariate polynomials S[xn] for a generic
ring S and allow S to be another polynomial ring, here S = R[x1] . . . [xn−1].

For recursively represented multivariate polynomials we have by construction

P1 := R[x1] . . . [xn] 6= R[xπ(1)] . . . [xπ(n)] =: Pπ (1)

when π is a nontrivial permutation. In order to perform calculations in the iso-
morphism class R[x1, . . . , xn], that means the ring of all polynomial rings of (1)
modulo permutation of variables we need to compute the representation of a
polynomial p1 ∈ P1 in Pπ. Note also that switching between different represen-
tations is unavoidable when performing operations which are dependent on a
specific variable as e.g. the computation of partial derivatives.

In the following we use the word “map” in the meaning that we calculate the
representation of a ring element as an element of another ring. The main result of
this paper is a new algorithm mapping an element p1 ∈ P1 to Pπ. More general,
the algorithm maps an element p ∈ R′[xπ(1)] . . . [xπ(k)] into R[x1] . . . [xn], where
k ≤ n, π is a permutation on {1, . . . , n}, and elements of R′ can be mapped into
R. Section 2 introduces the algorithm and we prove its correctness. The com-
plexity of the algorithm based both on theoretical discussion and experimental
results is evaluated in Section 3.

In Section 4 we show how to use the algorithm together with an excep-
tion handling mechanism to solve related problems as avoiding constructions as
R[x][x] or to map elements from one polynomial ring into another where the two
sets of variables only have a common subset.

In the last section we give some implementation remarks. An example im-
plementation can be found in the Java package com.perisic.ring [2]. The related
web site http://ring.perisic.com contains also a small demo applet and source
code of Java classes.

2 The Algorithm

In the following a ring means a ring with 1. First we describe the context of
the algorithm. An abstract base class Ring requires from its child classes the



*

ZPolynomial Ring

coefficient ring

Ring Element Ring

java.lang.Object

Fig. 1. UML diagram of the ring/polynomial relationship

implementation of the basic arithmetic (addition, multiplication, ...). A second
class RingElement stores the information about the elements of a ring. Each
RingElement instance a is associated to an instance of a child class R of the Ring.
We intuitively write for short a ∈ R. Examples for R are the ring of integers, ra-
tional numbers or a polynomial ring. We assume that the class PolynomialRing
extends the Ring and has two attributes, the variable and the coefficient
ring. So, the polynomial ring R = T [x] has the attributes “x” and T . Figure 1
shows an UML diagram for the classes that implement multivariate polynomials
over Z in this way.

For an element r ∈ T [x] we write r =
∑

bix
i = b0x

0 + · · ·+ bnxn with bi ∈ T
hence implying an internal representation containing the values of the bi.

Each ring R has a method map(RingElement b). For a RingElement instance
b ∈ S where S is another ring it returns a ∈ R such that a = κ(b) where κ is a
canonical (possibly partial defined) function κ : S → R.

So for example the map method of the field Q of rational numbers will return
the ring element a = b/1 for an integral argument b ∈ Z. Vice versa, a map
method of Z for fractions p/q ∈ Q is only partially defined, i.e. for q = ±1.

Note that Z can be mapped into each ring R via the mapping ±n 7→ ±(1R +
· · ·+ 1R) (n times), where 1R is the 1 of the ring R.

With the notation introduced above our aim is to give an algorithm for
the map method of the PolynomialRing class. For this we use the following
recursively defined algorithm.

Algorithm 1 (Map).
Input:

– A ring element s ∈ S where S is a ring.
– A polynomial ring T [x] where T is a ring.

Output:

– s′ ∈ T [x] with s = s′.

The algorithm: Return a value depending on the different cases below.
(Note: The only nontrivial case is case V.)



Case I: If S = T [x] return s′ := s.
Case II: If S = T return s′ := sx0.
Case III: If S is not a polynomial ring then map s into t ∈ T and return

s′ := tx0.
Case IV: If S = U [x], where U is a ring, we have s =

∑
aix

i. In this case map
each ai ∈ U to bi ∈ T and return s′ :=

∑
bix

i.
Case V: If S = U [y] with y 6= x and U a ring, we have s =

∑
aiy

i. Map
y ∈ Z[y] to yT ∈ T and map ai ∈ U into ci ∈ T [x]. Let yT [x] := yT x0 ∈ T [x].
Return the result of the computation s′ :=

∑
ciy

i
T [x].

Note that with S = R[xπ(1)] . . . [xπ(k)], T = R[x1] . . . [xn−1] and x = xn we
obtain the situation of the introduction.

Theorem 2. Algorithm 1 is correct.

Proof. From the construction it is straightforward by checking each single case
that the algorithm delivers the correct result if it terminates. So it remains to
show that the algorithm in fact terminates. In particular we have to show that
case V does not lead to an infinite recursion. We prove this by induction to
l = l(S, T [x]) := m + n where n is the number of variables of T [x] and m is the
number of variables of S with m = 0 if S is not a polynomial ring.

– For l = 1 we have n = 1 and m = 0. This means we are in one of the cases II
or III and T is not a polynomial ring. In these cases the algorithm obviously
terminates.

– Assume now l > 1. For m = 0 we are in case III. By induction we know
that s can be mapped into T and therefore the algorithm terminates in
this case. For m > 0 the critical case is case V. But in this case we have
l(Z[y], T ) = n < l and l(U, T [x]) < l and therefore the algorithm terminates
by induction.

ut

3 Complexity of the Algorithm

Algorithms for the arithmetic of multivariate polynomials in recursive represen-
tation are obviously exponential in the number of variables, as the simple task
to lookup all coefficients is exponential in the number of variables. However in
applications involving a large number of variables usually most of the coefficients
are equal zero (because otherwise it would be hopeless to get any result at all)
leading to considerable shortcuts for all algorithms.

Hence, for understanding the performance of Algorithm 1 we choose the
strategy to relate the complexity of our algorithm to the complexity of a simple
operation on multivariate polynomials, namely addition. For a polynomial p let
the density m(p) be the number of monomials in distributed representation.

The main interpretation of the theorem that follows is that Algorithm 1 is
feasible for a polynomial p whenever the Addition of two polynomials similar



to p (i.e. having the same density as p) is feasible as well. For simplicity we
assume a slightly less general situation than in Algorithm 1. After the proof of
the theorem we will discuss some quantitative experimental results.

Theorem 3. Let R be a ring, π : {1, ..., n} → {1, ..., n} be a permutation, Sn =
R[xπ(1)] . . . [xπ(n)] and Tn = R[x1] . . . [xn]. For a polynomials s ∈ Sn let d(s)
be an upper bound for the degree of all univariate polynomials involved in the
recursive representation and m(s) be the density.

The complexity of Algorithm 1 (i.e. mapping s ∈ Sn into Tn) is

O((d(s) + 1)A(n, m(s))),

where A(n, m) is the complexity of the addition of two polynomials in n variables
with density at most m.

Proof. In the following we write f ∼ g for f = O(g). Let C(i, n) be the complex-
ity of mapping an element of Si (of fixed density m = m(s) and upper bound
d = d(s)) into Tn.

The most expensive of the cases is case V. Here we get the recursive formula

C(i, n) ∼ (d + 1)C(i− 1, n) + (d + 1)A(i,m),

where (in the notation of Algorithm 1) the C(i − 1, n) term comes from the
mapping of the coefficients aj of s =

∑
ajy

j into T [x]. The cost of the mapping
of the monomial y into T and other operations (multiplication by a monomial)
are dominated by C(i− 1, n).

Noting that C(0, n) is linear in n and therefore dominated by A(n, m), we
get

C(n, n) ∼
n∑

i=0

(d + 1)i+1A(n− i, m).

The complexity of addition increases by a factor d + 1 when one variable is
added, that means we have A(k,m) ∼ (d+1)A(k−1,m). This proves C(n, n) ∼
(d + 1)A(n, m) ut

For an experimental investigation of the quantitative relationship between
mapping and addition we used the Monte-Carlo approach to test the algorithm
on random input data. The test program is written in Java. We run the test
(using the Java 1.5 virtual machine) twice on two different machines, first on an
Intel Celeron 600 MHz under Windows 98 and then on an Intel Pentium 1.80
GHz processor under Windows 2000. In the following we relate the data to the
Celeron and give the corresponding values for the Pentium in brackets. We will
see that the values are very similar which indicates that the results are largely
independent from the absolute speed of the environment.

For 1000 (26664) polynomials we computed the time for mapping of the poly-
nomial to another polynomial ring and the time for addition of the polynomial
to itself. The data that was recorded for each polynomial p are the number of
variables n(p), the upper bound d(p) and the density m(p) from Theorem 2, and



the quotient ρ(p) := M(p)/A(p) where M(p) is the time for mapping the polyno-
mial ring in another ring with randomly permuted variables and A(p) the time
for adding the polynomial to itself. The polynomials are randomly constructed
in the range 3 ≤ d(p) ≤ 13, 2 ≤ m(p) ≤ 202 and 3 ≤ m(p) ≤ 33. The output
is a comma separated list that can be used as data source for a spreadsheet
program (as e.g. Microsoft’s Excel in our example). The program is available
upon request 3. The source code of the Java library com.perisic.ring [2] used in
the tests is available as open source on http://ring.perisic.com.

As results we get 0.001 < ρ(p) < 34.5 (0.001 < ρ(p) < 38.1). The average of
ρ(p) over all polynomials p is 13.8 (14.1) and the median is 12.7 (13.4). We think
that the median is more relevant in this context as there can be exceptional
values in the test data that may have been produced by other processes, e.g. the
Java garbage collection or system processes. The statistical correlation between
ρ(p) and d(p) is 0.528 (0.55), that can be interpreted that the formula ρ(p) ∼ d(p)
identified in Theorem 2 is valid but that there are also other factors (as e.g. the
entropy of the permutation) to be considered. There is no correlation between
ρ(p) and the m(p) or n(p) (that means the correlation is close to zero). This is
again in accordance to the result of Theorem 2.

For the quotient ρ(p)/d(p) we obtain 0.0001 < ρ(p)/d(p) < 5.172 (0.0001 <
ρ(p)/d(p) < 5.890). A closer analysis shows that the values close to zero come
from polynomials where the permutation is the identity (hence the mapping is
trivial). If we ignore these cases we get that 0.48 < ρ(p) (1.01 < ρ(p)). These val-
ues illustrate the constants that are implicit in the Big-O notation. The median
of all values ρ(p)/d(p) is 1.963 (1.974) and the average is 2.035 (2.046).

Observation 4. Heuristical data suggests that the complexity of Algorithm 1 is
in average 2(d+1)A(n) where d is an upper bound for the degree of all univariate
polynomials involved in the recursive representation and A(n) is the complexity
of the addition of two polynomials as in Theorem 2.

4 Related Problems and Extensions

First we consider the problem of ambiguity of variable names. We want to avoid
constructions as Z[x][y][x]. Therefore we implement the map method of a ring
such that an exception is thrown in the case that there is no canonical map from
the input parameter into the ring. In fact we need only the minimal requirement
that a ring R which is not a polynomial ring throws an exception if we try to
map a polynomial into R.

Algorithm 5 (Safe map).
Input:

– A ring T and a variable x.

Output:
3 Marc.Conrad@luton.ac.uk



– true, if x is a variable of T and false otherwise.

The algorithm:

1. Try to map x ∈ Z[x] into T via Algorithm 1.
2. If no exception is thrown return true. Otherwise return false.

Another useful extension of Algorithm 1 is the introduction of a new case
IVa which is checked before case V. This additional case allows the mapping of
polynomials of polynomial rings, where the sets of variables only have a common
subset. So, for instance we can map z + yz2 ∈ Z[x][y][z] into Z[z][a][y] because
x does not occur in the polynomial z + yz2.

Algorithm 6 (Extended map).
Extend Algorithm 1 with an additional case between case IV and case V:

Case IVa: If S = U [y] with y 6= x and U a ring, and, in addition, s = uy0 with
u ∈ U , then map u into s′ ∈ T [x] and return s′.

5 Implementation Remarks

The Java package com.perisic.ring [2] contains an example implementation of
Algorithm 1 together with the extensions of Section 4 (exception handling, case
IVa). The package has been designed to provide an experimental conceptual-
ization of Mathematics in software [3]. It is distributed under the GPL and
available from http://ring.perisic.com. There are some minor modifications dif-
ferences between the algorithm implemented in that package and Algorithm 1
that are listed in the following. Please see [2] for details.

1. There exists an additional method which parses a string and converts it into
a polynomial. This method is used in case V. Instead of mapping y ∈ Z[y]
into T , the string “y” is mapped into T via the String mapping method.
Both ways are conceptually equivalent.

2. In the package the class RingElt is abstract and has child classes
PolynomialRingElt, IntegerRingElt etc. which contain the data. The poly-
nomials are stored in dense representation as arrays of ring elements which
is sufficient for the experimental nature of the package.

3. Additional rings are available in the package, for instance rational numbers,
complex numbers, cyclotomic fields, and modular rings.

References

1. D. Barrington, R. Beigel, S. Rudich, Representing boolean functions as polynomials
module composite numbers, Proc of the 24th annual ACM symposium on Theory
of computing, pp. 455–461 (2004).



2. M. Conrad, com.perisic.ring – A Java class package for multivariate polynomials,
http://ring.perisic.com.

3. M. Conrad, T. French, Exploring the synergies between the object-oriented paradigm
and mathematics: a java led approach, International Journal of Mathematical Ed-
ucation in Science and Technology, Vol 35, No.5,733-742 (2004).

4. J. v. z. Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University
Press, Cambridge (1999)

5. R. Lipton, N. Vishnoi, Deterministic Identity Testing for Multivariate Polyno-
mials, Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 756–760 (2003).

6. V. Niculescu, A Design Proposal for an Object Oriented Algebraic Library, Studia
Universitatis “Babes-Bolyai”, Informatica XLVIII, No. 1, 2003

7. A. Sommese, J. Verschelde, C. Wampler, Numerical Factorization of Multivariate
Complex Polynomials, Theoretical Computer Science 315, 2–3, 2004.

8. E. Zima, Mixed representation of polynomials oriented towards fast parallel shift,
Proc. of the second international symposium on Parallel symbolic computation,
pp. 150–155 (1997).


