What are big numbers? Some examples...

- $\mathbb{N}_0, \mathbb{N}_1, \mathbb{N}_2, \ldots$ are very big numbers.

- The largest known prime, discovered by Slowinski and Gage, 1994, is $2^{859433} - 1$.

- Indlekofer and Jarai computed 1995 the largest known twin primes $2^{42206083} \pm 1$.

- RSA-130 = 18070820886874048059516561
 644059055662781025167694013491701270214
 500566625402440483873411275908123033717
 81887966563182013214880557 was factored by Lenstra et al. on April 10, 1996.

- Fermigier found out on May 19, 1996, that the elliptic curve $y^2 + xy + y = x^3 - 940299517776391362903023121165864x + 10707363070719743033425295515449274534651125011362/8$ has rank ≥ 22.

- Pott used the number 5 in her Ph.D. thesis in functional analysis.

- The largest value of a probability measure is 1.
How to avoid using big numbers?

- Floating point arithmetic: i.e. Let $N \approx \pm mB^e$, where B is fixed (e.g. $B = 2, 10, 2^{32}$), e small, and $m \in \{0, \ldots, k\}$. This leads to the well known problems of numerical stability, error growth, non associativity...

- Modular arithmetic: Let p be a fixed (prime) number and perform your calculations modulo p. E.g. In algebraic geometry many invariants remain stable under reduction modulo suited primes.

Macaulay 3.0 performed all integer calculations modulo $p = 31991$.

- The Chinese remainder approach: Let $n = d_1 \cdots d_r$ with $\gcd(d_i, d_j) = 1$ for $i \neq j$. Do the calculations parallel on r machines modulo d_i and put the result together, using the Chinese remainder theorem:

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_r\mathbb{Z}.$$

If n is chosen big enough, the computation of $+, -, \cdot$ is like the computation in \mathbb{Z}. This method is sometimes used to evaluate polynomials over \mathbb{Z}.
Representation by arrays:

Let $A = a_0 + a_1 B + \cdots + a_7 B^7$
and $C = c_0 + c_1 B + c_2 B^2 + c_3 B^3$.

This leads to the problem of fragmentation, because the memory of your computer develops like this:

$\begin{array}{ccc}
A & C & D \\
\vdots & \vdots & \vdots \\
C & \leftarrow A \cdot C & \text{leads to:}
\end{array}$

$\begin{array}{ccc}
A & D & C \\
\vdots & \vdots & \vdots \\
\text{some computations later} \ldots
\end{array}$

$\begin{array}{ccc}
F & A & C & E \\
\vdots & \vdots & \vdots & \vdots \\
\end{array}$
Representation by lists:

Let \(A = a_0 + a_1B + a_2B^2 + a_3B^3 \)
and \(C = c_0 + c_1B \).

This avoids the fragmentation problem completely, but in the memory of your computer, there can happen something like this:

It can happen, that you have to access many different parts of the memory, in order to walk through a number.
Lists vs. Arrays

Arrays: Fast in performing basic integer operations (+, −, ·, /), esp. when the integers are large. E.g. factoring algorithms, primality testing...

Lists: Fast, if the integers occur as parts of more complicated objects, esp. when the integers themself are small (< B^5). E.g. computations with matrices over rationals, elements of algebraic fields, points of elliptic curves...

SIMATH uses three different packages, to perform integer calculations:

- Arrays of fixed length (by R. Staszewski, Essen 1991)
- Arrays of arbitrary length (by R. Dentzer, Heidelberg 1993)
- Lists (by the SIMATH group itself, Saarbrücken, since 1986)

For more info's about SIMATH see the URL http://emmy.math.uni-sb.de/